Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 44
Filter
Add more filters










Publication year range
1.
Biochem Pharmacol ; 222: 116066, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38373592

ABSTRACT

Chimeric antigen receptor (CAR)-immune cell therapy has revolutionized the anti-tumor field, achieving efficient and precise tumor clearance by directly guiding immune cell activity to target tumors. In addition, the use of CAR-immune cells to influence the composition and function of the immune system and ultimately achieve virus clearance and immune system homeostasis has attracted the interest of researchers. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) triggered a global pandemic of coronavirus disease 2019 (COVID-19). To date, the rapidly mutating SARS-CoV-2 continues to challenge existing therapies and has raised public concerns regarding reinfection. In patients with COVID-19, the interaction of SARS-CoV-2 with the immune system influences the course of the disease, and the coexistence of over-activated immune system components, such as macrophages, and severely compromised immune system components, such as natural killer cells, reveals a dysregulated immune system. Dysregulated immune-induced inflammation may impair viral clearance and T-cell responses, causing cytokine storms and ultimately leading to patient death. Here, we summarize the research progress on the use of CAR-immune cells against SARS-CoV-2 infection. Furthermore, we discuss the feasibility, challenges and prospect of CAR-immune cells as a new immune candidate therapy against SARS-CoV-2.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , COVID-19/therapy , Inflammation , Immunotherapy, Adoptive , Cell- and Tissue-Based Therapy
2.
Arthritis Rheumatol ; 2024 Jan 14.
Article in English | MEDLINE | ID: mdl-38221658

ABSTRACT

OBJECTIVE: The specific role of fibroblast-like synoviocytes (FLSs) in the pathogenesis of rheumatoid arthritis (RA) is still not fully elucidated. This study aimed to explore the molecular mechanisms of epigenetic pathways, including three epigenetic factors, microRNA (miRNA)-22 (MIR22), ten-eleven translocation methylcytosine dioxygenase 3 (TET3), and MT-RNR2 like 2 (MTRNR2L2), in RA-FLSs. METHODS: The expression of MIR22, TET3, and MTRNR2L2 in the synovium of patients with RA and arthritic mice were determined by fluorescence in situ hybridization, quantitative polymerase chain reaction (qPCR), immunohistochemistry, and Western blot. Mir22-/- and Tet3+/- mice were used to establish a collagen antibody-induced arthritis (CAIA) model. Mir22 angomir and Tet3 small interfering RNA (siRNA) were used to illustrate the therapeutic effects on arthritis using a collagen-induced (CIA) model. Bioinformatics, luciferase reporter assay, 5-hydroxymethylcytosine (5hmC) dot blotting, chromatin immunoprecipitation-qPCR, and hydroxymethylated DNA immunoprecipitation were conducted to show the direct repression of MIR22 on the TET3 and transcriptional activation of TET3 on MTRNR2L2. RESULTS: The Mir22-/- CAIA model and RA-FLS-related in vitro experiments demonstrated the inhibitory effect of MIR22 on inflammation. MIR22 can directly inhibit the translation of TET3 in RA-FLSs by binding to its 3' untranslated region in TET3. The Tet3+/- mice-established CAIA model showed less severe symptoms of arthritis in vivo. In vitro experiments further confirmed the proinflammatory effect of TET3 in RA. In addition, the CIA model was used to validate the therapeutic effects of Mir22 angomir and Tet3 siRNA. Finally, TET3 exerts its proinflammatory effect by promoting 5hmC production in the promoter of its target MTRNR2L2 in RA-FLSs. CONCLUSION: The key role of the MIR22-TET3-MTRNR2L2 pathway in RA-FLSs provided an experimental basis for further studies into the pathogenesis and related targets of RA from the perspective of FLSs.

3.
J Transl Med ; 21(1): 654, 2023 09 22.
Article in English | MEDLINE | ID: mdl-37740183

ABSTRACT

BACKGROUND: The chimeric antigen receptor (CAR)-T therapy has a limited therapeutic effect on solid tumors owing to the limited CAR-T cell infiltration into solid tumors and the inactivation of CAR-T cells by the immunosuppressive tumor microenvironment. Macrophage is an important component of the innate and adaptive immunity, and its unique phagocytic function has been explored to construct CAR macrophages (CAR-Ms) against solid tumors. This study aimed to investigate the therapeutic application of CAR-Ms in ovarian cancer. METHODS: In this study, we constructed novel CAR structures, which consisted of humanized anti-HER2 or CD47 scFv, CD8 hinge region and transmembrane domains, as well as the 4-1BB and CD3ζ intracellular domains. We examined the phagocytosis of HER2 CAR-M and CD47 CAR-M on ovarian cancer cells and the promotion of adaptive immunity. Two syngeneic tumor models were used to estimate the in vivo antitumor activity of HER2 CAR-M and CD47 CAR-M. RESULTS: We constructed CAR-Ms targeting HER2 and CD47 and verified their phagocytic ability to ovarian cancer cells in vivo and in vitro. The constructed CAR-Ms showed antigen-specific phagocytosis of ovarian cancer cells in vitro and could activate CD8+ cytotoxic T lymphocyte (CTL) to secrete various anti-tumor factors. For the in vivo model, mice with human-like immune systems were used. We found that CAR-Ms enhanced CD8+ T cell activation, affected tumor-associated macrophage (TAM) phenotype, and led to tumor regression. CONCLUSIONS: We demonstrated the inhibition effect of our constructed novel HER2 CAR-M and CD47 CAR-M on target antigen-positive ovarian cancer in vitro and in vivo, and preliminarily verified that this inhibitory effect is due to phagocytosis, promotion of adaptive immunity and effect on tumor microenvironment.


Subject(s)
CD47 Antigen , Ovarian Neoplasms , Humans , Female , Animals , Mice , Ovarian Neoplasms/therapy , Macrophages , Phagocytosis , Tumor Microenvironment
4.
Life Sci ; 320: 121558, 2023 May 01.
Article in English | MEDLINE | ID: mdl-36889666

ABSTRACT

Glioma is the most common tumor of the primary central nervous system, and its malignant phenotype has been shown to be closely related to glioma stem cells (GSCs). Although temozolomide has significantly improved the therapeutic outcome of glioma with a high penetration rate of the blood-brain barrier, resistance is often present in patients. Moreover, evidence has shown that the crosstalk between GSCs and tumor-associated microglia/macrophages (TAMs) affect the clinical occurrence, growth, and multi-tolerance of chemoradiotherapy in gliomas. Here, we highlight its vital roles in the maintenance of the stemness of GSCs and the ability of GSCs to recruit TAMs to the tumor microenvironment and promote their polarization into tumor-promoting macrophages, hence providing groundwork for future research into new treatment strategies of cancer.


Subject(s)
Brain Neoplasms , Glioma , Microglia , Neoplastic Stem Cells , Tumor-Associated Macrophages , Neoplastic Stem Cells/drug effects , Neoplastic Stem Cells/pathology , Tumor-Associated Macrophages/drug effects , Tumor-Associated Macrophages/immunology , Tumor-Associated Macrophages/pathology , Microglia/drug effects , Microglia/immunology , Microglia/pathology , Humans , Animals , Glioma/drug therapy , Glioma/immunology , Glioma/pathology , Glioma/radiotherapy , Signal Transduction , Macrophage Activation , Brain Neoplasms/drug therapy , Brain Neoplasms/immunology , Brain Neoplasms/pathology , Brain Neoplasms/radiotherapy , Tumor Microenvironment
5.
Int Immunopharmacol ; 116: 109755, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36724626

ABSTRACT

Rheumatoid arthritis (RA) is a multisystemic and inflammatory autoimmune disease characterized by joint destruction. The C-C motif chemokine receptor 2 (CCR2) is mainly expressed in monocytes and T cells, initiating their migration to sites of inflammation, ultimately leading to cartilage damage and bone destruction. CCR2 has long been considered a prospective target for treating autoimmune diseases. However, clinical studies on inhibitors or neutralizing antibodies against CCR2 in RA have exhibited limited efficacy. Recent evidence indicates that CCR2 may play different roles in RA. Hence, a comprehensive understanding regarding the role of CCR2 may facilitate the development of targeted drugs and provide novel insights for improving CCL2-mediated inflammatory diseases. This review summarizes the biological characteristics of CCR2, the related signaling pathways, and recent developments in CCR2-targeting therapeutics.


Subject(s)
Arthritis, Rheumatoid , Receptors, CCR2 , Humans , Chemokine CCL2/metabolism , Inflammation/drug therapy , Monocytes , Receptors, CCR2/metabolism
6.
Ann Rheum Dis ; 82(2): 198-211, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36198439

ABSTRACT

OBJECTIVES: To uncover the function and underlying mechanism of an essential transcriptional factor, PU.1, in the development of rheumatoid arthritis (RA). METHODS: The expression and localisation of PU.1 and its potential target, FMS-like tyrosine kinase 3 (FLT3), in the synovium of patients with RA were determined by western blot and immunohistochemical (IHC) staining. UREΔ (with PU.1 knockdown) and FLT3-ITD (with FLT3 activation) mice were used to establish collagen antibody-induced arthritis (CAIA). For the in vitro study, the effects of PU.1 and FLT3 on primary macrophages and fibroblast-like synoviocytes (FLS) were investigated using siRNAs. Mechanistically, luciferase reporter assays, western blotting, FACS and IHC were conducted to show the direct regulation of PU.1 on the transcription of FLT3 in macrophages and FLS. Finally, a small molecular inhibitor of PU.1, DB2313, was used to further illustrate the therapeutic effects of DB2313 on arthritis using two in vivo models, CAIA and collagen-induced arthritis (CIA). RESULTS: The expression of PU.1 was induced in the synovium of patients with RA when compared with that in osteoarthritis patients and normal controls. FLT3 and p-FLT3 showed opposite expression patterns compared with PU.1 in RA. The CAIA model showed that PU.1 was an activator, whereas FLT3 was a repressor, of the development of arthritis in vivo. Moreover, results from in vitro assays were consistent with the in vivo results: PU.1 promoted hyperactivation and inflammatory status of macrophages and FLS, whereas FLT3 had the opposite effects. In addition, PU.1 inhibited the transcription of FLT3 by directly binding to its promoter region. The PU.1 inhibitor DB2313 clearly alleviated the effects on arthritis development in the CAIA and CIA models. CONCLUSIONS: These results support the role of PU.1 in RA and may have therapeutic implications by directly repressing FLT3. Therefore, targeting PU.1 might be a potential therapeutic approach for RA.


Subject(s)
Arthritis, Experimental , Arthritis, Rheumatoid , Proto-Oncogene Proteins , Synoviocytes , Trans-Activators , Animals , Mice , Arthritis, Experimental/metabolism , Arthritis, Rheumatoid/drug therapy , Cell Proliferation , Cells, Cultured , Fibroblasts/metabolism , fms-Like Tyrosine Kinase 3/metabolism , fms-Like Tyrosine Kinase 3/pharmacology , fms-Like Tyrosine Kinase 3/therapeutic use , Synovial Membrane/metabolism , Synoviocytes/metabolism , Proto-Oncogene Proteins/metabolism , Trans-Activators/metabolism
7.
Front Pharmacol ; 14: 1306125, 2023.
Article in English | MEDLINE | ID: mdl-38249346

ABSTRACT

Background: Chronic kidney disease (CKD) is now globally recognized as a critical public health concern. Vascular calcification (VC) represents a significant risk factor for cardiovascular events in individuals with CKD. It is the accessible and precise diagnostic biomarkers for monitoring the progression of CKD and the concurrent VC are urgently needed. Methods: The adenine diet-induced CKD rat model was utilized to investigate chronic kidney injury, calcification in the kidney and thoracic aorta, and dysregulation of biochemical indices. Enzyme-linked immune sandwich assays were employed to analyze changes in calcification-related proteins. 16S rRNA sequencing was performed to delineate the microbiota characteristics in the gut and blood of CKD-afflicted rats. Additionally, transcriptome sequencing of kidney tissue was conducted to explore the relationship between CKD-associated microbiota features and alterations in kidney function. Results: The adenine diet-induced CKD inhibited body weight gain, and led to kidney injury, and pronounced calcification in kidney and thoracic aorta. The microbiota both in the gut and blood of these affected rats exhibited significantly lower alpha diversity and distinctive beta diversity than those in their healthy counterparts. CKD resulted in dysregulation of several biochemical indices (including elevated levels of creatinine, low-density lipoprotein-cholesterol, sodium, phosphorous, total cholesterol, and urea and decreased levels of albumin, calcium, lactate dehydrogenase, and total bilirubin). Moreover, it upregulated calcification-related factors (bone sialoprotein [BSP], Klotho, fibroblast growth factor [FGF]-23, and sclerostin [SOST]) and lipopolysaccharide (LPS). Notably, the increased Acinetobacter in the blood was positively associated with calcifications in the kidney and thoracic aorta, in addition to the positive correlation with gut microbiota. The enrichment of Acinetobacter was concurrent with increases in calcification factors (BSP, FGF-23, and SOST), LPS, and phosphorous. Furthermore, transcriptome sequencing revealed that the enrichment of Acinetobacter was positively correlated with the majority of upregulated genes and negatively correlated with downregulated genes involved in the mineral absorption pathway. Conclusion: Our findings, for the first time, underscore that dysbiosis of symbiotic microbiota, both in the gut and blood, is involved in the progression of CKD. Particularly, the enrichment of Acinetobacter in blood emerges as a potential risk factor for CKD and its accompanying VC.

8.
Front Immunol ; 13: 1001201, 2022.
Article in English | MEDLINE | ID: mdl-36248862

ABSTRACT

PU.1, a transcription factor member of the E26 transformation-specific family, affects the function of a variety of immune cells in several physiological and pathological conditions. Previous studies studying the role of PU.1 in pathological conditions have mainly focused on immune system-related cancers, and a series of articles have confirmed that PU.1 mutation can induce a variety of immune cell-related malignancies. The underlying mechanism has also been extensively validated. However, the role of PU.1 in other major immune system-related diseases, namely, systemic autoimmune diseases, is still unclear. It was only in recent years that researchers began to gradually realize that PU.1 also played an important role in a variety of autoimmune diseases, such as rheumatoid arthritis (RA), experimental autoimmune encephalomyelitis (EAE) and systemic lupus erythematosus (SLE). This review article summarizes the findings of recent studies that investigated the role of PU.1 in various autoimmune diseases and the related underlying mechanisms. Furthermore, it presents new ideas and provides insight into the role of PU.1 as a potential treatment target for autoimmune diseases and highlights existing research problems and future research directions in related fields.


Subject(s)
Encephalomyelitis, Autoimmune, Experimental , Lupus Erythematosus, Systemic , Neoplasms , Animals , Proto-Oncogene Proteins , Trans-Activators/genetics , Transcription Factors
9.
Mol Ther Nucleic Acids ; 27: 733-750, 2022 Mar 08.
Article in English | MEDLINE | ID: mdl-35317281

ABSTRACT

Rheumatoid arthritis (RA) is an inflammation-involved disorder and features the disruption of CD4+ T lymphocytes. Herein, we describe that microRNA-10b-5p (miR-10b) promotes RA progression by disrupting the balance between subsets of CD4+ T cells. MiR-10b-deficient mice protected against collagen antibody-induced arthritis (CAIA) model. RNA sequencing results indicated that disordered genes in miR-10b-/- CAIA model are closely associated with CD4+ T cells differentiation. Moreover, miR-10b mimics promoted Th1/Th17 and suppressed Th2/Treg cells differentiation, whereas miR-10b inhibitor induced contrary effects. In addition, GATA3 and PTEN was confirmed as two targets of miR-10b, and GATA3 siRNA could increase Th1 and reduce Th2 cells meanwhile PTEN siRNA could increase Th17 and decrease Treg cells. Furthermore, miR-10b inhibitor significantly ameliorated collagen-induced arthritis (CIA) development by attenuating the dysfunctional CD4+ T cell subpopulations. The present findings suggest that miR-10b could disrupt the balance of CD4+ T subsets, while suppressed miR-10b could attenuate the severity of experimental arthritis, which provided us a novel mechanistic and therapeutic insight into the RA.

11.
Oncogene ; 41(17): 2444-2457, 2022 04.
Article in English | MEDLINE | ID: mdl-35279703

ABSTRACT

Macrophage-mediated tumor cell phagocytosis and subsequent neoantigen presentation are critical for generating anti-tumor immunity. This study aimed to uncover the potential clinical value and molecular mechanisms of miRNA-22 (miR-22) in tumor cell phagocytosis via macrophages and more efficient T cell priming. We found that miR-22 expression was markedly downregulated in primary macrophages from glioma tissue samples compared to adjacent tissues. miR-22-overexpressing macrophages inhibited glioma cell proliferation and migration, respectively. miR-22 upregulation stimulated the phagocytic ability of macrophages, enhanced tumor cell phagocytosis, antigen presentation, and efficient T cell priming. Additionally, our data revealed that miR-22-overexpressing macrophages inhibited glioma formation in vivo, HDAC6 was a target, and NF-κB signaling was a pathway closely associated with miR-22 in tumor-associated macrophages (TAMs) of glioma. Our findings revealed the essential roles of miR-22 in tumor cell phagocytosis by macrophages and more efficient T cell priming, facilitating further research on phagocytic regulation to enhance the response to tumor immunotherapy.


Subject(s)
Glioma , Macrophages , MicroRNAs , Adaptive Immunity , Cell Line, Tumor , Cell Proliferation , Glioma/immunology , Glioma/pathology , Humans , Immunity, Innate , Macrophages/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Phagocytosis
12.
Biol Trace Elem Res ; 200(4): 1883-1891, 2022 Apr.
Article in English | MEDLINE | ID: mdl-34115284

ABSTRACT

As a new type of biologically compatible material, TiO2 NPs are widely used in the industry as additives, drug carriers, and components of skin care products. Due to their wide use, residual TiO2 NPs in the environment are a safety concern that has attracted extensive attention. In this study, the ovarian cell line BmN of the model organism Bombyx mori was used to reveal the damaging effects of TiO2 NPs exposure. The results demonstrated that TiO2 NPs exhibited a dose-dependent effect on the relative cell viability, with significant toxic effects being observed above 20 mg/L. Oxidative damage analysis showed that ROS accumulated significantly in BmN cells after exposure to TiO2 NPs (P ≤ 0.05) and induced DNA damage. Further analysis revealed that the transcriptional levels of key superoxide dismutase genes (SOD) decreased significantly, while the transcriptions of key genes of the MAPK/NF-κB signaling pathway (P38, MEK, ERK and REL) and the downstream inflammatory factor genes (IL6 and TNFSF5) were all significantly up-regulated (P ≤ 0.05). Overall, our results indicate that exposure to TiO2 NPs leads to reduced transcription of antioxidant genes, accumulation of peroxides, and inflammation. These findings provide valuable data for the safety evaluation of environmental residues of TiO2 NPs.


Subject(s)
Bombyx , Metal Nanoparticles , Nanoparticles , Animals , Metal Nanoparticles/toxicity , Nanoparticles/chemistry , Oxidative Stress , Titanium/chemistry
13.
Biomed Pharmacother ; 139: 111605, 2021 Jul.
Article in English | MEDLINE | ID: mdl-33901872

ABSTRACT

Chimeric antigen receptor (CAR)-T cell therapy has been shown to be an effective treatment for hematological tumors, but the treatment of solid tumors still lacks effectiveness. In the tumor microenvironment, macrophages are the innate immune cells with the highest infiltration rate. Tumor-associated macrophages (TAMs) stimulate angiogenesis, increase tumor invasion, and mediate immunosuppression. Because macrophages can infiltrate solid tumor tissue and interact with almost all cellular components in the tumor microenvironment (including tumor cells, immune cells such as T-cells, NK cells, DCs, and other resident non-immune cells), researchers are trying to use macrophages modified with CAR (CAR-M) against solid tumors. This review describes recent reports of CAR-M-based tumor treatments and summarizes their shortcomings and future applications.


Subject(s)
Immunotherapy , Macrophages/immunology , Neoplasms/therapy , Receptors, Chimeric Antigen/immunology , Animals , Humans , Neoplasms/immunology
14.
Ecotoxicol Environ Saf ; 210: 111888, 2021 Mar 01.
Article in English | MEDLINE | ID: mdl-33421719

ABSTRACT

This study aimed to explore the toxicity of environmental residues of graphene oxide nanoparticles (GONPs) to reproduction of Lepidopteron insects using both ovary cell line (BmN) and individual female Bombyx mori as the research subjects. The results showed that GONPs dose dependently affect BmN cells. At higher concentrations (>25 mg/L), GONPs led to oxidative stress, ROS accumulation and DNA damage in BmN cells and significantly reduced their survival rate (p ≤ 0.05). Moreover, feeding female B. mori larvae with mulberry leaves treated with 25 mg/L GONPs significantly decreased their gonadosomatic index (GSI) by 40.84%, and increased oxidation levels and antioxidant enzyme activity in silkworm ovary tissues. Pathological analysis found that exposure to GONPs decreased the numbers of both oogonia and oocytes in ovarian tissues, increased the formation of peroxisome and vacuoles in follicle cells, reduced the transcription of genes (Vg, Ovo, Sxl-s, Sxl-l, and Otu) related to ovarian development in B. mori by 0.61, 0.65, 0.75, 0.72, and 0.42-fold, respectively, and lowered the amount of spawning by 52.25%. Overall, these results revealed that GONPs exposure is toxic to the reproduction of B. mori. The underlying mechanism is that oxidative stress due to GONPs causes oxidative damage to DNA, damages ovarian tissues, as well as hinders B. mori development and spawning. Thus, this study provides important experimental data for safety evaluation of reproductive toxicity due to GONPs exposure.


Subject(s)
Bombyx/drug effects , Graphite/toxicity , Nanoparticles/toxicity , Animals , Bombyx/physiology , Cell Line , DNA Damage , Female , Male , Oocytes/drug effects , Oocytes/metabolism , Oocytes/pathology , Oxidative Stress/drug effects , Reactive Oxygen Species/metabolism , Reproduction/drug effects
15.
J Cancer ; 12(1): 224-231, 2021.
Article in English | MEDLINE | ID: mdl-33391419

ABSTRACT

Glioma is a malignant brain tumor with a generally poor prognosis. Dysregulation of a long non-coding RNA, GAS5, has been detected in numerous cancers, including glioma. Previous studies have suggested that GAS5 plays a significant functional role in glioma, affecting proliferation, metastasis, invasion, and apoptosis. In this review, we describe the roles and mechanisms of GAS5 in glioma. GAS5 may be a biomarker for diagnosis and prognosis, and even a potential target for glioma treatment, and therefore warrants further investigation.

16.
J Mech Behav Biomed Mater ; 113: 104147, 2021 01.
Article in English | MEDLINE | ID: mdl-33096450

ABSTRACT

Silk is widely used in the biomedical field (e.g., surgical sutures) for its excellent mechanical properties and biocompatibility. The properties of silk can be further enhanced by a multitude of methods, including nano particle feeding, which is convenient and green. Generally, the filament length of a silkworm cocoon ranges from 1300 to 1700 m. Despite the fact that the filament size, a key factor affecting the mechanical properties of silk, varies along the length, evaluation of strengthened silk by segment and the specific distribution along the length has not been reported. Therefore, in the present study, we fed silkworms with graphene oxide-sprayed mulberry leaves and evaluated the silk properties segment by segment. The silk's strength and elongation were significantly enhanced, with more α-helical/random coils and thicker mesophase regions. Specifically, the silk from 2‰ GO-treated group had higher strength in the first 60% of the length, whereas the silk from 1‰ GO-treated group was stronger in the last 40% of the length. Notably, the silk from 1‰ GO-treated group had the highest strength and Young's modulus in the last 20% of the length, indicating that this segment is more suitable for use as a surgical suture. Our findings demonstrate that different silk segments offer a great range of desirable assets, and the feasibility to select a specific segment with the desired properties for a specific application.


Subject(s)
Bombyx , Graphite , Animals , Silk , Sutures
17.
Cell Prolif ; 54(2): e12929, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33300633

ABSTRACT

Glioma is the most commonly observed primary intracranial tumour and is associated with massive angiogenesis. Glioma neovascularization provides nutrients for the growth and metabolism of tumour tissues, promotes tumour cell division and proliferation, and provides conditions ideal for the infiltration and migration of tumour cells to distant places. Growing evidence suggests that there is a correlation between the activation of nuclear factor (NF)-κB and the angiogenesis of glioma. In this review article, we highlighted the functions of NF-κB in the angiogenesis of glioma, showing that NF-κB activation plays a pivotal role in the growth and progression of glioma angiogenesis and is a rational therapeutic target for antiangiogenic strategies aimed at glioma.


Subject(s)
Brain Neoplasms/pathology , Glioma/pathology , NF-kappa B/metabolism , Antineoplastic Agents, Immunological/therapeutic use , Brain Neoplasms/blood supply , Brain Neoplasms/metabolism , Brain Neoplasms/therapy , Caspases/metabolism , Cytokines/metabolism , Glioma/blood supply , Glioma/metabolism , Glioma/therapy , Humans , MicroRNAs/metabolism , NF-kappa B/antagonists & inhibitors , NF-kappa B/genetics , Neovascularization, Pathologic , Oxidative Stress
18.
Pestic Biochem Physiol ; 170: 104676, 2020 Nov.
Article in English | MEDLINE | ID: mdl-32980056

ABSTRACT

Acetamiprid is a new neonicotinoid insecticide widely used in the prevention and control of pests in agriculture. However, its residues in the environment affect the cocooning of the silkworm, Bombyx mori (B. mori), a non-target insect. To investigate the mechanism of damage, B. mori larvae were fed with trace amounts of acetamiprid (0.15 mg/L). At 96 h after exposure, the larvae showed signs of poisoning and decreased body weight, resulting in reduced survival and ratio of cocoon shell. At 48 h and 96 h after exposure, the residues in the posterior silk gland (PSG), which is responsible for synthesizing silk fibroin, were 0.72 µg/mg and 1.21 µg/mg, respectively, as measured by high performance liquid chromatography, indicating that acetamiprid can accumulate in the PSG. Moreover, pathological sections and transmission electron microscopy also demonstrate the damage of the PSG by acetamiprid. Digital gene expression (DGE) and KEGG pathway enrichment analysis revealed that genes related to metabolism, stress responses and inflammation were significantly up-regulated after exposure. Quantitative RT-PCR analysis showed that the transcript levels of FMBP-1 and FTZ-F1 (transcription factors for synthesizing silk protein) were up-regulated by 2.55-and 1.56-fold, respectively, and the transcript levels of fibroin heavy chain (Fib-H), fibroin light chain (Fib-L), P25, Bmsage and Bmdimm were down-regulated by 0.75-, 0.76-, 0.65-, 0.44- and 0.40-fold, respectively. The results indicate that accumulated acetamiprid causes damage to the PSG and leads to reduced expression of genes responsible for synthesizing silk fibroin. Our data provide reference for evaluating the safety of acetamiprid residues in the environment for non-target insects.


Subject(s)
Bombyx/genetics , Fibroins , Animals , Insect Proteins/genetics , Neonicotinoids/toxicity , Silk
19.
Pestic Biochem Physiol ; 170: 104685, 2020 Nov.
Article in English | MEDLINE | ID: mdl-32980060

ABSTRACT

Sublethal doses of chlorantraniliprole (CAP) disrupt spinning disorder in the silkworm Bombyx mori (B. mori) and cause reduced cocoon production. In the present study, we investigated the effects of trace amounts of CAP on morphology and gene expression of the B. mori silk gland, found the posterior silk gland cells were possessed of disintegrated Endoplasmic reticulum (ER), unevenly distributed chromatin after exposure to CAP (0.01 mg/L). Gene expression analysis revealed that IRE1 and ATF6 ER stress-signaling pathways were inhibited, the PERK/CncC pathway was activated. Digital gene expression (DGE) analysis showed that detoxification-related genes, antioxidant genes and genes involved in ER protein processing pathway were expressed differentially in CAP-treated silkworm larvae. Notably, the transcript levels of the detoxification-related genes (CYP4M5, CYP6AB4, GSTD3 and GSTS1) and the antioxidant genes (CAT, TPX and SOD) were significantly increased, and the expression of ER protein processing-related genes (Sec61ß, Sec61γ, Sec23α and ERGIC-53) was significantly decreased after CAP exposure. The results showed that sublethal doses of CAP exposure caused ER stress, oxidative damage to the silk gland and the perturbation of protein processing in ER, thereby probably leading to abnormal growth of the silk gland and triggering the spinning failure in silkworm.


Subject(s)
Bombyx/genetics , Animals , Antioxidants , Insect Proteins/genetics , Larva/genetics , Silk , ortho-Aminobenzoates/toxicity
20.
Genomics ; 112(6): 4577-4584, 2020 11.
Article in English | MEDLINE | ID: mdl-32758539

ABSTRACT

Mitochondrial genomes (mitogenomes) have been widely used for studies on phylogenetic relationships and molecular evolutionary biology. Here, the complete mitogenome sequence of Spilosoma lubricipedum (Noctuoidea: Erebidae: Arctiinae) was determined (total length 15,375 bp) and phylogenetic analyses S. lubricipedum were inferred from available noctuid sequence data. The mitogenome of S. lubricipedum was found to be highly A + T-biased (81.39%) and exhibited negative AT- and GC-skews. All 13 protein-coding genes (PCGs) were initiated by ATN codons, except for cox1 with CGA. All tRNAs exhibited typical clover-leaf secondary structures, except for trnS1. The gene order of the S. lubricipedum mitogenome was trnM-trnI-trnQ-nad2. The A + T-rich region of S. lubricipedum contained several conservative features common to noctuid insects. Phylogenetic analysis within Noctuoidea was carried out based on mitochondrial data. Results showed that S. lubricipedum belonged to Erebidae and the Noctuoidea insects could be divided into five well-supported families (Notodontidae + (Erebidae + (Nolidae + (Euteliidae + Noctuidae)))).


Subject(s)
Genome, Mitochondrial , Moths/genetics , AT Rich Sequence , Animals , Genes, rRNA , Insect Proteins/genetics , Lepidoptera/classification , Moths/classification , Phylogeny , RNA, Transfer/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...